|
z |- bgcolor="#ddffdd" align="center" | 0 || 0 || 0 || 0 || 0 |- bgcolor="#ddffdd" align="center" | 0 || 0 || 1 || 1 || 1 |- bgcolor="#ddffdd" align="center" | 0 || 1 || 0 || 0 || 0 |- bgcolor="#ddffdd" align="center" | 0 || 1 || 1 || 1 || 1 |- bgcolor="#ddffdd" align="center" | 1 || 0 || 0 || 0 || 0 |- bgcolor="#ddffdd" align="center" | 1 || 0 || 1 || 0 || 0 |- bgcolor="#ddffdd" align="center" | 1 || 1 || 0 || 1 || 1 |- bgcolor="#ddffdd" align="center" | 1 || 1 || 1 || 1 || 1 |} In Boolean algebra, the consensus theorem or rule of consensus〔Frank Markham Brown, ''Boolean Reasoning: The Logic of Boolean Equations'', 2nd edition 2003, p. 44〕 is the identity: : The consensus or resolvent of the terms and is . It is the conjunction of all the unique literals of the terms, excluding the literal that appears unnegated in one term and negated in the other. The conjunctive dual of this equation is: : ==Proof== LHS = = = = = = RHS 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「consensus theorem」の詳細全文を読む スポンサード リンク
|